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Abstract

We introduce two new volume-of-
uid interface reconstruction algorithms and compare the accuracy of

these algorithms to four other widely used volume-of-
uid interface reconstruction algorithms. We �nd that

the new methods are second-order accurate and the other algorithms are �rst-order accurate. We conjecture

that a necessary and su�cient condition for a stable volume-of-
uid algorithm to be second-order accurate is

that it reproduce straight lines (or planes in 3D) exactly. We also introduce a second-order, unsplit, volume-

of-
uid advection algorithm that is based on a second-order, �nite di�erence method for scalar conservation

laws due to Bell, Dawson and Shubin. We test this advection algorithmby modeling several di�erent interface

shapes propagating in two simple incompressible 
ows and compare the results with the standard second-

order, operator-split advection algorithm. Although both methods are second-order accurate, we �nd that

the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous

derivatives, such as at corners.
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Computational Sciences under contract DE-AC03-76SF00098 and by the Defense Nuclear Agency under IACRO 96-

3075.
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1. Introduction

There are numerous instances in which it is necessary to reconstruct or track the boundary between

two materials in a numerical computation. Examples include numerical models of 
uid jetting devices [14,

57, 63], weld pools [7], molten metal [31, 60], semiconductor device etching [1, 17, 18, 19] and thin 
ame

models of combustion [8, 15, 53, 43]. An overview of the state of the �eld in the early 1980's may be found

in [6]. However a number of new ideas have appeared since then, notably the level set approach of Osher

and Sethian [1, 40, 54, 56, 67]. During the last decade there has also been considerable work devoted to

developing algorithms that approximate the front as a collection of line segments (2D) or polygons (3D)

(e.g., [16, 61]) and on boundary integral methods (e.g., [39, 55]).

In this article we study a class of interface tracking algorithms known as volume-of-
uid methods. In

a volume-of-
uid method the motion of the interface itself is not tracked, but rather the volume of each

material in each cell is evolved in time and the interface at the new time is reconstructed from the values of

the volumes at this new time. For this reason volume-of-
uid methods are sometimes referred to as volume

tracking methods (e.g., see [52]).

The basic idea behind a volume-of-
uid method is as follows.1 Suppose that we wish to track the interface

between two materials, say a dark 
uid and a light 
uid, in two dimensions. We begin by covering the

problem domain with a grid with spacing h = �x = �y . With each grid cell we associate a number fi;j

that represents the amount of dark 
uid in the i; jth cell,

fi;j h
2 = volume of dark 
uid in the i; j th cell: (1:1)

The number fi;j is called the volume fraction (of dark 
uid) in the i; jth cell. It is apparent that

0 � fi;j � 1 ; (1:2)

that the volume fraction associated with the light 
uid is 1� fi;j and that a portion of the interface lies in

the i; jth cell if and only if 0 < fi;j < 1. The discrete variable fi;j is a discretization of the characteristic

function associated with the dark 
uid,

f(x; y) �

�
1 if there is dark 
uid at the point (x; y),
0 if there is light 
uid at the point (x; y),

(1:3)

in the sense that

fi;j h
2
�

Z Z
i;jth cell

f(x; y) dx dy : (1:4)

1 Here and in the remainder of this article we restrict the discussion to uniform square grids and two space dimensions.

Neither of these restrictions are necessary. We employ them merely for simplicity and clarity of exposition.
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Since the 
uid type does not change along particle paths in an incompressible, non-reacting 
ow, the

characteristic function f is passively advected with the 
ow. Hence, f satis�es the advection equation,

ft + ufx + vfy = 0 ; (1:5)

where u = (u; v) denotes the 
uid velocity. If the 
ow is incompressible, then u satis�es

ux + vy = 0 : (1:6)

Multiplying (1.6) by f and adding it to (1.5) we obtain a conservation law for the characteristic function f ,

ft + (uf)x + (vf)y = 0 : (1:7)

Equation (1.7) re
ects the fact that in an incompressible 
ow conservation of mass is equivalent to conser-

vation of volume, and hence conservation of f .

In a compressible 
ow the velocity �eld u does not satisfy (1.6) and hence f is not conserved. However

the mass of each material is conserved and therefore it is important that a numerical method for modeling

this phenomena also conserve the mass of each 
uid. It is relatively easy to design a volume-of-
uid interface

tracking algorithm that does this (e.g., see [10, 36, 51]). Volume-of-
uid algorithms are the basis for most

of the large application codes that are used at the national laboratories to model multi-phase, compressible

phenomena on Eulerian grids (e.g., [2, 24, 25, 33]). These codes are also used extensively by geophysicists

to model meteor impacts and related problems (e.g., see Melosh [34]).

Recently, there have been several important improvements to the basic volume-of-
uid methodology for

modeling compressible 
ows. Colella, Glaz and Ferguson [10] have developed a model of interface motion in

compressible 
ow in which (1.7) is modi�ed by the addition of a term that accounts for the e�ect of isentropic

volume changes due to changes in the pressure; i.e., changes in the speci�c volume V of the form (@V=@P )S .

Their method allows one to model disparities in the compressibility of two materials (e.g., air and water) on

a sub-grid scale. Puckett and Saltzman [51] have developed an algorithm for tracking gas interfaces in three

space dimensions that is based on these ideas while Miller and Puckett [36] have developed a similar model

for tracking the interface between two solids at very high pressures and temperatures (e.g., magmas) in the

hydrostatic limit (i.e., without strength).

In this article we restrict ourselves to consideration of incompressible 
ow problems. One might expect the

incompressible advection problem to be less di�cult than the corresponding problem in compressible 
ow.

However our experience has been that this is generally not true. The di�culty in modeling incompressible


ow arises because f is also constrained by the maximum principle (1.2) but numerical errors in estimating

the 
uxes in (1.7) lead to overshoot and undershoot in the values of f . In practice we have found that for the
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simple advection problems considered here these errors are on the order of machine zero (e.g., see Tables 4.9

and 5.6 below). For more di�cult problems they tend to be on the order of one hundredth of a percent (e.g.,

see the computations in [47]).

Since in an incompressible 
ow f satis�es (1.7), the time update of the discrete variable fi;j can be

accomplished with a conservative �nite di�erence method. One can therefore draw on the vast body of

knowledge for high-resolution numerical methods for conservation laws (e.g., [5, 9, 30, 62]) to devise a

method for updating f numerically. In this article we present a volume-of-
uid advection algorithm that is

based on ideas developed by Bell, Dawson and Shubin [5] to construct a �nite di�erence method for modeling

solutions of scalar conservation laws.

Volume-of-
uid methods have been in use for several decades. In one of the earliest implementations of

these methods DeBar [13] used a volume-of-
uid algorithm in a two-dimensional Eulerian method to model

compressible multi-phase 
ow. Another early algorithm of this type is the SLIC (Simple Line Interface

Calculation) method of Noh and Woodward [38]. SLIC and its variants have been very widely used. For

example, Colella, Henderson and Puckett used it to model shock wave refraction at a gas interface [11,

20, 45]. In [8] Chorin developed an improved version of SLIC in order to model 
ame propagation and

combustion. Ghoniem, Chorin, and Oppenheim [15] and Sethian [53] used Chorin's version to model turbu-

lent combustion, while Whitaker [64] used it to model Hele-Shaw 
ow. Another well-known volume-of-
uid

algorithm is the VOF algorithm of Hirt and Nichols [23].2 Several codes based on the VOF algorithm,

namely SOLA-VOF [23, 37] and its descendants NASA-VOF2D [58], NASA-VOF3D [59], RIPPLE [26, 27]

and FLOW3D [22] have been, and continue to be, widely used by researchers to model interfaces and free

surfaces in industrial applications. For example, researchers at Xerox have used a modi�ed version of these

codes to model the 
ow in thermal ink jet devices [14, 57] and they have been used extensively by material

scientists to model weld pools [7] and solidifying droplets [31, 60]. However, the volume-of-
uid algorithms

in all of the methods just referred to are built around relatively crude interface reconstruction algorithms

that rely on a piecewise constant or \staircase" representation of the interface, such as the one shown in

Fig. 1.1c, and advection algorithms that are at best �rst-order accurate. More modern volume-of-
uid inter-

face reconstruction methods use a linear approximation to the interface in each multi
uid cell (e.g., [4, 28,

41, 46, 51, 52, 65]). This results in a piecewise-linear approximation to the interface as shown in Fig. 1.1d.

However, as we demonstrate in x3 below, a piecewise-linear approximation to the interface in each cell is

not su�cient to guarantee a second-order accurate approximation to the interface. We demonstrate (numer-

ically) that a su�cient condition for a volume-of-
uid interface reconstruction algorithm to be second-order

2 Many workers use the acronym \VOF" - which stands for \Volume-of-Fluid" - to refer generically to any volume-

of-
uid algorithm. However, we refrain from doing so since others use it to refer speci�cally to Hirt and Nichols'

algorithm and the associated 
uid dynamics code SOLA-VOF [23, 37].
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accurate on smooth interfaces, is for the algorithm to reproduce linear interfaces exactly. In x3 we show

that two interface reconstruction algorithms introduced by the authors (the Least Squares Volume-of-Fluid

Interface Reconstruction Algorithm (LVIRA) [46] and the E�cient Least Squares Volume-of-Fluid Interface

Reconstruction Algorithm (ELVIRA) [42]) have this property. These second-order accurate piecewise-linear

interface reconstruction algorithms have been used extensively to model a variety of compressible and in-

compressible 
ows, including Richtmyer-Meshkov instability [32], shock refraction in gases [21, 48, 49] and

shock refraction and impact jetting in solids [35, 36, 50] and the motion of 
uid interfaces in variable density

incompressible 
ow [47].

d) piecewise linear approximation

0 0 0

0 0.3 0.5

0.9 10.5

a) true interface b) volume fractions

c) SLIC approximation

Figure 1.1 Volume-of-Fluid methods represent an interface (a) by storing volume fractions associated with

the interface as shown in (b). An approximation to the interface is produced using an interface reconstruction

method such as SLIC, shown in (c), or a more general piecewise linear approximation as in (d).

There seems to be a widely held belief in the CFD community that one cannot obtain high-order accuracy

with a volume-of-
uid algorithm (e.g., see p. 26 of [61]). Perhaps this is due to the widespread use of SLIC

and VOF, which are at best �rst-order accurate and can easily fragment a smooth front (e.g., see Figs. 4.2

and 4.3 below and Figs. 6 and 8 of [29]). One of the goals of this article is to demonstrate that one can

construct high-order accurate volume-of-
uid interface tracking algorithms that are as e�ective, and for some

problems more e�ective, than competing methods. There are four principal reasons for the e�ectiveness of
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volume-of-
uid algorithms:

1) Volume-of-
uid algorithms naturally conserve the mass of each 
uid. For incompressible 
ow

this is because the advection algorithm is a conservative discretization of the conservation law (1.7)

for f , which is equivalent to the mass conservation equation. In a compressible 
ow the mass of

each 
uid component must still be conserved even though the characteristic function f is not. In

a volume-of-
uid method this can be easily arranged by appending a separate conservation law for

the mass of each 
uid to the original system of conservations laws (e.g., see [10, 36, 51]).

2) In both compressible and incompressible 
ows it is desirable, if not essential, that the location

of the interface as determined by the interface tracking algorithm coincide with the location of

the jump in density (and possibly other quantities) as determined by the underlying discretization

of the 
uid 
ow equations. Since the 
ux of a conserved quantity can be written in terms of

the 
uid volume that crosses a cell edge, it is a simple matter to enforce these constraints in a

volume-of-
uid method.

3) Volume-of-
uid methods automatically handle changes in the global topology of the front, such

as fronts that break up into droplets or fronts that collide with themselves and merge. This

eliminates the algorithmic complexity that can occur when the front is modeled by a collection of

line segments or polygons. Furthermore, the logical structure of the algorithm is not signi�cantly

more complicated in three dimensions than in two. This is in contrast to polygonal representations

of the front in which the logical complexity increases substantially in going from two to three

dimensions. (A discussion of the complexity issue can be found in [17].)

4) The work required to update the front location is entirely local; typically one needs the velocity

and volume fractions in a 3�3 block (or 5�5�5 block in 3D) of cells to update the volume fraction

in the center cell. Since the interface is a codimension 1 set, the computational work required to

update the location of the interface is typically O(Nd�1) for a problem on a grid with Nd cells in

d � 2 space dimensions. Thus, the work required to update the front location is small compared

to the work required to update the underlying velocity �eld. The local nature of volume-of-
uid

algorithms also makes them amenable to e�cient parallelization strategies.

In conclusion, volume-of-
uid methods can be naturally formulated in conservative �nite di�erence form,

thereby ensuring that the mass of each material is conserved and that the location of the interface will

coincide with jumps in density and other 
uid properties, they handle changes in the topology of the front

without an increase in algorithmic complexity or computational cost and the work required to update the

front is small compared to the work required to update the underlying velocity �eld.
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The remainder of this paper is organized as follows. In x2 we describe six volume-of-
uid interface

reconstruction algorithms, including the two new second-order accurate algorithms. In x3 we study the

spatial accuracy of these methods by using them to reconstruct various stationary interfaces. In x4 we

discuss operator split advection algorithms and study the time accuracy of second-order accurate, operator

split advection by using it, in combination with each of the six interface reconstruction algorithms, to

approximate various interface shapes undergoing translation and rotation. In x5 we describe a second-order

accurate, unsplit advection algorithm we have developed and examine the accuracy of this algorithm by

applying it to the problems studied in x4. We state our conclusions in x6.

2. Volume-of-Fluid Interface Reconstruction Algorithms

In this section we consider the following problem. Let 
 be a region in the plane IR2 and let z(s) =

(x(s); y(s)) for 0 � s � 1 be a piecewise smooth interface. In all of the examples we study z is C0 and

piecewise C2. In addition, in all but one of these examples z is a closed curve z(0) = z(1), the exception

being when z is a line, in which case z(0); z(1) 2 @
. We think of z as separating 
 into two regions of


uids which we refer to as \light" and \dark" 
uid. Now cover 
 with a square grid 
h where h denotes the

grid spacing. For each 0 � i � M and 0 � j � N let fi;j represent the fraction of the i; jth cell's volume

that is occupied by the dark 
uid. The problem is to reconstruct the interface z, given only the grid 
h and

the volume fractions fi;j, i = 0; :::;M and j = 0; :::; N . We refer to an algorithm for solving this problem

as a volume-of-
uid interface reconstruction algorithm.

Each of the algorithms described in this section produces a linear approximation to the interface in each

multi
uid cell; i.e., each cell which satis�es 0 < fi;j < 1. (We use the terms multi-
uid and multi-material

interchangeably). In general, these piecewise linear approximations are not continuous. All of the algorithms

except for SLIC use the volume fractions in a 3� 3 block of cells to determine the approximate interface in

the center cell of the block. SLIC uses only the volume fractions in a 3 � 1 block of cells to determine the

approximate interface in the center cell of the block.

All of the algorithms described below except for SLIC also return a slope, or equivalently, a vector n

normal to the interface. In this article we adopt the convention that n always points away from the dark


uid. The normal vector ni;j in the i; jth cell together with the volume fraction fi;j uniquely determines the

approximate linear interface in that cell. Thus, since the volume fraction fi;j is given, all of the algorithms

described below (but SLIC) are simply rules for determining a unit normal vector from the values of the

volume fractions in some neighborhood of the i; jth cell.

In what follows we often will replace the problem of �nding the unit normal n to the approximate interface

with that of �nding its slope em, since for many of the interface reconstruction algorithms we study this results
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in very simple formulas for em. However, this approach is problematic when the best linear approximation is a

vertical, or nearly vertical, line. This can be remedied by rotating the 3�3 block of cells by 90� and applying

the interface reconstruction algorithm in the new coordinate frame. In our discussion of the various interface

reconstruction algorithms below we will sometimes omit details related to this coordinate transformation.

Because of the di�culty in representing a vertical line in slope intercept form, we have found that in

practice it is usually preferable to represent the approximate interface in each multi-material cell as a unit

vector n = (nx; ny) normal to the approximate interface together with it's distance d from the origin. In

this case the line satis�es the following equation

nx x + ny y = d :

We have found that this is a better computational representation than the slope intercept form

y = emx+ b :

2.2 Simple Line Interface Calculation (SLIC) This algorithm is due to Noh and Woodward [38]. Their

version of SLIC is a strictly one-dimensional method in which one uses the information in a 3� 1 block of

cells to reconstruct the interface in the middle cell. This necessitates the use of an operator split advection

algorithm (described in x4) when one is solving problems in two and three space dimensions. Chorin [8] (see

also [64]) has proposed a variant of the original SLIC algorithm that uses the volume fraction information

in a 3 � 3 block of cells to reconstruct the interface in the center cell. However in general this modi�ed

algorithm still does not yield an approximation to the interface that is independent of the sweep direction

and hence one is still constrained to use an operator split advection algorithm. Here we study the original

version of SLIC as described in [38].

In the SLIC method the reconstructed interface is composed of one or (in two cases) two lines aligned

with the grid. The interface geometry and location is based on the values of the volume fractions in the

a row of three cells centered on the cell containing the interface. Fig. 2.1 shows the interface geometry in

four of the nine possible cases. The other �ve cases are obtained by switching light and dark 
uid, or by

switching left and right. Note that the approximate interface is not necessarily perpendicular to the sweep

direction. Since SLIC always returns horizontal or vertical lines, it obviously does not exactly reproduce all

linear interfaces and hence it is at best �rst-order accurate.

2.3 The Center of Mass Algorithm This method is due to Saltzman [51]. In the Center of Mass

algorithm, one considers the dark 
uid to have a mass density of 1, and the light 
uid to have no mass. To

determine the approximate interface in the center of a 3� 3 block of cells one �rst determines the center of

mass (�x; �y) of the 3 � 3 block and then �nds a unit vector that points from this point to the center of the

center cell. This vector is taken as the unit normal n to the approximate interface.
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Figure 2.1 Four of the nine possible cases in SLIC. The other �ve cases are obtained by switching light and

dark, or by switching left and right.

To see if this method reproduces all lines exactly we consider the exact version of the method. In other

words, to �nd (�x; �y) we integrate exactly rather than by using a numerical approximation to the integrals as

one does in practice. Let h be the cell width of the 3�3 block, and choose a coordinate system in which the

center of the center cell is at the origin. If the Center of Mass algorithm reproduces all lines exactly, then

in particular for arbitrary m it must reproduce the line y = mx exactly. Let (�x; �y) be the coordinate of the

center of mass of this 3� 3 grid. We can �nd (�x; �y) by

�x =

R 1:5h
�1:5h

Rmx
�1:5h

x dy dxR 1:5h
�1:5h

Rmx
�1:5h

dy dx
=

R 1:5h
�1:5h

mx2 + 1:5hx dxR 1:5h
�1:5h

mx+ 1:5h dx
=

2:25mh3

4:5h2
=

mh

2
;

�y =

R 1:5h
�1:5h

Rmx
�1:5h

y dy dxR 1:5h
�1:5h

Rmx
�1:5h

dy dx
=

R 1:5h
�1:5h

m2x2 � 2:25h2 dx

9h2
=

2:25m2h3 � 6:75h3

9h2
=

m2h � 3h

4
:

The slope of the line given by this method is found by

�x

��y
=

mh

2

4

3h�m2h
=

2m

3�m2
:

Thus the center of mass algorithm does not exactly reconstruct the line y = mx, and hence it is at best

�rst-order accurate.

2.4 Parker and Youngs' Method In this method, due to Parker and Youngs [41], one calculates an

approximation to rf , which is taken to point in the direction normal to the approximate interface. One

calculates rf with the following di�erence scheme

@f

@x
=

fE � fW

2
;

@f

@y
=

fN � fS

2
:
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f

f f

f

W

N

E

S

Figure 2.2 The stencil that Parker and Youngs use to determine rf .

The variables fE , fW , fN , fS are centered in the cells as shown in Fig. 2.2 and are given by

fE =
1

2 + �
(fi+1;j�1 + �fi+1;j + fi+1;j+1) ;

fW =
1

2 + �
(fi�1;j�1+ �fi�1;j + fi�1;j+1) ;

fN =
1

2 + �
(fi�1;j+1 + �fi;j+1 + fi+1;j+1) ;

fS =
1

2 + �
(fi�1;j�1+ �fi;j�1 + fi+1;j�1) ;

where � is a free parameter. Parker and Youngs report that � = 2 seems to give the best results.

In order to determine how well Parker and Youngs' method approximates straight lines, we consider the

line y = 1

3
x+h shown in Fig. 2.3a. The volume fractions due to this line are shown in Fig. 2.3b. The values

of fE , fW , fN , fS are

fE =
1

�+ 2
(
5

6
�+ 1) ;

fW =
1

�+ 2
(
1

6
�+ 1) ;

fN = 0 ;

fS =
1

�+ 2
(1 + �+ 1) = 1 ;

and hence
@f

@x
=

(fE � fW )

2
=

�

3(�+ 2)
;

@f

@y
=

(fN � fS)

2
= �

1

2
:

The slope of the approximate interface is therefore

em =
�@f=@x

@f=@y
=

2�

3(�+ 2)
:

The correct slope of the line is m = 1=3. Thus if we wish to choose � so that

2�

3(�+ 2)
=

1

3
:
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(a) h
0

2h 3h

2h

3h

h

(b)

0

1 1

5/6

1

0 0

1/6 1/2

(c) h 2h 3h

2h

3h

h

0
(d)

0 1/12 2/3

1/3 11/12 1

1 1 1

Figure 2.3 (a) Parker and Youngs' method will reconstruct this line exactly only if � = 2. (b) The volume

fractions associated with the line shown in (a). (c) Parker and Youngs' method does not reconstruct this

line exactly for � = 2. Thus it does not reproduce all linear interfaces exactly, and so we conclude it is a

�rst-order method. (d) The volume fractions associated with the line shown in (c).

we must have � = 2. In other words, only the value of � = 2 will yield the correct linear interface y = 1

3
x+h.

We now show that � = 2 does not reconstruct all lines exactly. Consider the line y = 2

3
x+ h shown in

Fig. 2.3c. The volume fractions due to this line are shown in Fig. 2.3d. When � = 2 the values of fE , fW ,

fN , fS are

fE =
1

4
(1 + 2 +

2

3
) =

11

12
;

fW =
1

4
(1 +

2

3
+ 0) =

5

12
;

fN =
1

4
(0 +

2

12
+
2

3
) =

5

24
;

fS =
1

4
(1 + 2 + 1) = 1 ;

and hence
@f

@x
=

1

2
(
11

12
�

5

12
) =

1

4
;

@f

@y
=

1

2
(
5

24
� 1) =

�19

48
:
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The slope of the approximate interface is therefore

em =
�@f=@x

@f=@y
=

1

4

48

19
=

12

19
: (2:1)

Since the correct slope is m = 2=3, we conclude that Parker and Youngs' algorithm will not reconstruct all

linear interfaces exactly.

Note that the quantity in (2.1) is independent of the grid width h. This implies that the approximation

to the slope does not improve as h ! 0; i.e., in general this algorithm makes an O(1) error in the slope of

the interface. We therefore conclude that it is at best a �rst-order accurate algorithm. This is consistent

with the numerical results presented in x4.

2.5 The Least Squares Volume-of-Fluid Interface Reconstruction Algorithm (LVIRA) This al-

gorithm is due to Puckett [46] and has been used extensively to model gas interfaces in compressible (e.g.,

see [35, 36, 48, 49]) and incompressible (e.g., see [3, 47]) 
ows. Consider the 3 � 3 block of cells centered

on the i; jth cell. Let f(x) be a curve that passes through the i; jth cell and let fk;l for k = i � 1; :::; i+ 1,

l = j � 1; :::; j+ 1 represent the volume fractions due to the function f , in the 3� 3 block. Now let ~f be a

linear approximation to f with slope em and volume fractions ~fk;l and assume that ~f has the same volume

fraction in the i; jth cell as f ; i.e., fi;j = ~fi;j. De�ne E2
i;j to be the discrete L2 error between the volume

fractions in the 3� 3 block of cells centered on the i; jth cell,

E2
i;j( em) =

� 1X
k;l=�1

( ~fi+k;j+l( em) � fi+k;j+l)
2

� 1
2

: (2:2)

In the LVIRA algorithm one minimizes E2
i;j as a function of em by rotating the the line ~f under the constraint

that this line exactly reproduces the volume fraction in the center cell, ~fi;j = fi;j.
3

Note that basic design criterion in the LVIRA algorithm is to minimize some measure of the error between

the volume fractions given by the true and approximate interfaces. One could instead choose to minimize

the discrete L1 error

E1

i;j( em) = max
k;l=�1;1

j ~fi+k;j+l( em) � fi+k;j+lj (2:3)

or the discrete L1 error

E1
i;j( em) =

1X
k;l=�1

j ~fi+k;j+l( em) � fi+k;j+lj (2:4)

in the 3� 3 block of cells centered on the i; jth cell, subject to the constraint that ~fi;j = fi;j .

3 In order for (2.2) to represent our algorithm correctly one must allow em to have the value em =1. For this reason

it is perhaps better to express the error Ei;j in (2.2) as a function of the unit normal n to the approximate interface.

However, we �nd that the formulas for the approximate slope em are much simpler to write down and understand. We

hope that the use of em in (2.2) this will not cause the reader confusion.
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We claim that if the original interface f(x) is a line, then the LVIRA algorithm - with any of the norms

de�ned in (2.2)-(2.4) - will exactly reconstruct this line in the i; jth cell. To see this suppose that f(x) is

a line and assume that that the minimization procedure will always �nd the correct global minimum when

given volume fraction data fk;l due to a linear interface in a 3� 3 block of cells. (Our test problems below

demonstrate that this is a reasonable assumption.) Each of the norms E�
i;j in (2.2)-(2.4) has a minimum

value of 0 that is attained when fk;l = ~fk;l for each cell in the 3 � 3 block. This will only occur when

~f (x) = f(x): Thus the LVIRA algorithm reconstructs linear interfaces exactly.

-1.0 -0.5 0.0 0.5 1.0
~
m

0.0

1.0

2.0

3.0
~

2
E

  (
m

)

Figure 2.4 The error E2
i;j( em) between a circle that passes through the cell center, with a tangent line of

slope of 0.5 at that point, and the approximate interface ~f with slope em.

In the work presented below we determine the slope em by using the central di�erence algorithm to obtain

an initial guess and then using Brent's algorithm (e.g., see [44]) to minimize E2
i;j. (Brent's algorithm is an

iterative method that �ts a parabola over the interval, and uses the minimum of the parabola as the next

guess for the minimum of the given function. If it cannot �t a parabola, it does a golden section search. The

method stops when both the interval and consecutive guesses are within a given tolerance.) To help ensure

that Brent's method will converge to the global minimum, we slowly expanded the interval about the initial

guess until the error at the endpoints of the interval was greater than the one given by the initial guess.

In Fig. 2.5 we present an example of Brent's method improving on the initial guess given by the central

di�erence algorithm and �nding the minimum of the function E2
i;j( em) shown in Fig. 2.4.

The term \Least Squares" that has come to be associated with this algorithm may be somewhat mislead-

ing. It was chosen because the method was originally designed to minimize the discrete L2 error de�ned

in (2.2). Since this is the same measure of error that is minimized in a \least squares" data �t it seemed
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0.40 0.45 0.50 0.55 0.60
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0.000
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0.008
~

2
E

  (
m

)
central differencing
Brent’s method

Figure 2.5 We use the centered di�erence algorithm to obtain a starting point for Brent's method, which

we then use to �nd the minimum of the curve shown in Figure 2.4.

natural to refer to the algorithm as the \Least Squares" Volume-of-Fluid Interface Interface Reconstruction

Algorithm. However, one should note that given a �xed volume fraction fi;j in the center cell, the function

F(n) that takes a unit vector n normal to the approximate linear interface ~f in the center cell and returns

the volume fractions ~fi+k;j+l for k; l = �1; :::; 1 in the 3�3 block of cells surrounding this cell, subject to the

constraint that ~fi;j = fi;j , is nonlinear. Thus, unlike the least squares data �tting algorithm, the problem

of minimizing (2.2) can not be formulated as the solution of a system of linear equations.

2.6 E�cient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm (ELVIRA)

This algorithm is due to Pilliod [42]. In the ELVIRA method, one obtains the slope em of the approximate

linear interface ~f by choosing between six candidate values of em. The �rst three of these six candidate

values are the backward, central and forward di�erences of the column sums of the volume fractions. In

other words, we consider the following three values

emx
b =

1X
l=�1

fi;j+l � fi�1;j+l ;

emx
c =

1X
l=�1

fi+1;j+l � fi�1;j+l ;

emx
f =

1X
l=�1

fi+1;j+l � fi;j+l :

(2:5)

The other three candidate values are the backward, central, and forward di�erences of the column sums of
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the volume fractions in the y direction; i.e., the di�erences of the row sums,

emy
b =

1X
k=�1

fi+k;j � fi+k;j�1 ;

emy
c =

1X
k=�1

fi+k;j+1 � fi+k;j�1 ;

emy
f =

1X
k=�1

fi+k;j+1 � fi+k;j :

(2:6)

(Note that the slopes emy are with respect to the coordinate system which is rotated 90� from the original

coordinate system. The lines ~f( emy) associated with these slopes and the resulting errors Ep
i;j( emy) must be

interpreted appropriately.) To determine which is the best slope em to use for a given collection of volume

fractions fk;l in the 3�3 block we minimize one of the norms in (2.2)-(2.4) over the slopes in (2.5) and (2.6),

em = f em�
� : Ep

i;j( em�
� ) = min[Ep

i;j( emx
b ); :::; E

p
i;j( emy

f )] for� = x; y and � = b; c; fg : (2:7)

(a) h 2h 3h

2h

3h

h

0
(b) h 2h 3h

2h

3h

h

0

c

Figure 2.6 (a) Center di�erences will exactly reconstruct a line that cuts opposite sides of a 3� 3 block of

cells. (b) It will not exactly reconstruct a line that cuts adjacent sides of a 3� 3 block of cells.

In order to examine how well this method approximates an arbitrary line, we must consider the following

two cases: (a) the line cuts opposite sides of the 3 � 3 grid, as in Fig. 2.6a or (b) it cuts adjacent sides,

as in Figure 2.6b. First consider the case shown in Fig. 2.6a. Suppose that the interface be given by

y(x) = mx + b. Let A1 be the sum of the volume fractions in the left hand column and A3 the sum of the

volume fractions in the right hand column in Fig. 2.6a. We can determine A1 by noting that it is the area

of the trapezoid with sides of length b and mh + b and width h while A3 is the area of the trapezoid with

sides of length 2mh+ b and 3mh+ b and width h,

A1 =
1

2h2
(mh+ b+ b)h =

m

2
+

b

h
;

A3 =
1

2h2
(3mh+ b+ 2mh + b)h =

5

2
m +

b

h
:
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Note that these formulas are exact no matter how the line y(x) intersects a given cell, provided only that

the line cuts opposite sides of the 3� 3 grid. The central di�erence approximation to m = y0(x) is given by

em =
1

2

1X
k=�1

fi+1;j+k � fi�1;j+k =
A3 �A1

2
= m:

Since the exact and approximate interfaces have the same slopes and the same volume fraction in the center

cell, they are the same line. Thus, when the true interface is a line that intersects opposite sides of the 3� 3

block, the approximate interface in the center cell will be precisely this line.

Now suppose that the linear interface does not intersects opposite sides of the 3� 3 block. Therefore, it

must intersect adjacent sides of the 3� 3 block. Consider the case shown in Fig. 2.6b, where the interface is

given by y = mx + b with m � 1. Let A1 be the sum of the volume fractions in the left hand column and

A2 be the sum of the volume fractions in the middle column. The quantities A1 and A2 are given by

A1 =
m

2
+

b

h
;

A2 =
1

2h2
(2mh + b+mh+ b)h =

3

2
m +

b

h
;

and their di�erence is,

emx
b = A2 � A1 = m:

Thus a backward di�erence of the column sums exactly reconstructs a linear interface that intersects the left

hand side of the 3� 3 block and has slope m � 1. By considering the mirror image of Fig. 2.6b, one can see

that a forward di�erence of the column sums will exactly reconstruct a linear interface that intersects the

right hand side of the 3� 3 block and has slope m � �1. If the magnitude of the slope m of the true linear

interface is greater than one, then the argument above, applied to the 3�3 block in a coordinate frame that

has been rotated 90�, shows that either a backward or forward di�erence of the row sums will produce the

correct slope. Thus, at least one of the errors Ep
i;j( em�

� ) inside the square brackets in (2.7) will be 0, thereby

guaranteeing that the ELVIRA algorithm will reconstruct all linear interfaces that pass through the center

cell of the 3� 3 block exactly.

If one only considers linear interfaces, the centered di�erence may seem redundant, since all three di�erence

methods produce the correct slope when the linear interface intersects opposite sides of the 3� 3 block. For

nonlinear interfaces, however, it appears that a centered di�erence sometimes produces a more accurate

approximation to the interface than the other two methods. For example, consider a circle that is placed

in the 3� 3 block such that the top of the circle intersects the center of the center cell. Then a backward

di�erence results in a positive slope, a forward di�erence results in a negative slope, while a centered di�erence

results in a zero slope. The latter is the best approximation to the slope of the tangent to the circle at the

center of the center cell.

3. Volume-of-Fluid Advection Algorithms
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In order to approximate solutions of the advection equation (1.7) we need an algorithm for evolving the

volume fractions in time. Let un
i�1

2
;j
(resp. vn

i;j�1
2

) denote the value of u (resp. v) at the center of the left

(resp. bottom) edge of the i; jth cell and suppose that these velocities satisfy a discrete form of (1.6),

(un
i+ 1

2
;j
� un

i� 1
2
;j
)

�x
+

(vn
i;j+ 1

2

� vn
i;j�1

2

)

�y
� 0 : (3:1)

Given an approximation to the interface in each cell for which 0 < fni;j < 1 we wish to determine the volume

fractions fn+1i;j at the new time tn+1 = (n + 1)�t . We refer to algorithms for doing this as volume-of-
uid

advection algorithms.

In this article we study two types of advection algorithms. Both are based on the standard conservative

�nite di�erence update of (1.7),

fn+1i;j = fni;j +
�t

�x
[Fn
i�1

2
;j
� Fn

i+ 1
2
;j
] +

�t

�y
[Gn

i;j�1
2

�Gn
i;j+1

2

] ; (3:2)

where Fn
i�1

2
;j
= (fu)n

i� 1
2
;j
denotes the 
ux of f across the left-hand edge of the i; jth cell and Gn

i;j�1
2

=

(fv)n
i;j� 1

2

denotes the 
ux across the bottom edge of the i; jth cell, etc.

3.1 Operator Split Advection The simplest advection algorithm for approximating solutions of (1.7) is

the fractional step or operator split method,

f�i;j = fni;j +
�t

�x
[Fn
i�1

2
;j
� Fn

i+ 1
2
;j
] ; (3:3)

fn+1i;j = f�i;j +
�t

�y
[G�

i;j�1
2

� G�

i;j+1
2

] : (3:4)

where the superscript � represents an intermediate value for the volume fractions and 
uxes. There is a

simple geometric interpretation of the 
uxes in (4.3)-(4.4). Suppose that un
i+ 1

2
;j
is positive. Divide the

(i; j)th cell into two disjoint rectangles, with areas un
i+ 1

2
;j
�t �y on the right and (�x � un

i+ 1
2
;j
�t ) �y

on the left as shown in Fig. 3.1a.

(a)

u    t∆

(b)

∆u    t

Figure 3.1 (a) In operator split advection, the 
uid to the right of the dotted line crosses the right cell

edge. (b) In a volume-of-
uid method, we use the reconstructed interface to determine the amount of 
uid

that crosses each edge.
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All of the 
uid to the right of the dotted line in Fig. 3.1a will cross the right-hand edge during this time

step. In particular, the 
ux of dark 
uid across this edge is equal to the amount of dark 
uid contained

in this rectangle. In a volume-of-
uid method, this can be determined by the location of the reconstructed

interface as shown in Fig. 3.1b. Thus, if Vi+ 1
2
;j denotes the volume of dark 
uid in the center cell to the

right of the dotted line in Fig. 3.1b, then the (approximate) volume fraction 
ux across the right hand cell

edge is given by

Fn
i+ 1

2
;j
= un

i+ 1
2
;j
Vi+ 1

2
;j

�
(un

i+ 1
2
;j
�t �y ) = Vi+ 1

2
;j

�
(�t �y ) : (3:5)

After using (4.5) in (4.3) to determine the intermediate volume fractions f�i;j , one then uses these values

to reconstruct the interface in all cells that satisfy 0 < f�i;j < 1. The vertical 
uxes G�

i;j+1=2 are then

determined by a geometric construction analogous to the one described for the horizontal 
uxes, and the

volume fractions at the new time level fn+1i;j are found by inserting these vertical 
uxes into (4.4). This

procedure can be made second-order accurate simply by alternating the sweep direction at each time step.

The CFL Constraint It is apparent from geometric considerations that one must choose the CFL number

� so that the amount of 
uid which leaves a cell in one time step is no more than the amount of 
uid that

was originally in the cell. In other words, one must choose � so that

Vi+ 1
2
;j � Vi� 1

2
;j � fi;j �x �y (3:6)

for all i, j. One way to ensure that (4.6) is always satis�ed is to choose � 2 (0; 1] so that

jun
i+1

2
;j
j �t � �x =2 and jvn

i;j+1
2

j �t � �y =2 for all i ; j : (3:7)

An alternative, is to choose � 2 (0; 1] so that

�
un
i+ 1

2
;j
� un

i�1
2
;j

�
�t � �x and

�
vn
i;j+ 1

2

� vn
i;j�1

2

�
�t � �y : (3:8)

This latter condition is less restrictive than (4.7) and will usually result in a larger time step

3.2 A First-Order Unsplit Advection Algorithm For many problems one will obtain satisfactory re-

sults with the second-order accurate, fractional step method described in x4. However for some problems,

such as unstable displacements in porous media, fractional step methods can distort the interface (e.g., see

the discussion in [5]). A characteristic feature of this problem is the so-called \push-pull" or \staircase"

phenomenon. For problems such as these it is preferable to use an unsplit advection algorithm. In this

section we present an unsplit, volume-of-
uid advection algorithm that is based on the approach used by

Bell, Dawson, and Shubin [5] to develop a second-order accurate, unsplit, �nite di�erence method for ap-

proximating solutions of scalar hyperbolic conservation laws. We then present the results of applying this
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A

H

B

C
E

G

D

F

x

ty

Figure 3.2 In this space-time diagram, the 
uid inside the solid 
uxes through the right cell edge.

advection algorithm to the test problems studied in x4. Since SLIC is an inherently one-dimensional method,

we will not use it in this section.

In order to present the basic idea behind the unsplit algorithmwe begin by describing a �rst-order accurate

version. We wish to use a conservative �nite di�erence method of the form (4.2) to approximate solutions

of the conservation law (1.7). To illustrate our approach we assume that u > 0 and v > 0, and describe how

one determines the 
ux Fn
i+ 1

2
;j
. The other cases are analogous. The 
ux through the right-hand edge of the

(i; j)th cell in the time interval (tn; tn+1) is

Fn
i+ 1

2
;j
=

Z tn+1

tn

Z y
i;j+1

2

y
i;j� 1

2

u(x; y; t) f(xi+ 1
2
;j; y; t) dy dt

= ui+ 1
2
;j

Z tn+1

tn

Z y
i;j+ 1

2

y
i;j� 1

2

f(xi+ 1
2
;j; y; t) dy dt :

(3:9)

where we have assumed that in our numerical discretization ui+ 1
2
;j is constant on the space time interval

(yi;j�1
2
; yi;j+1

2
) � (tn; tn+1). This integral is the amount of dark 
uid in the space-time rectangle BCEF

shown in Fig. 3.2.

A

H

E

B

G

D

Figure 3.3 Domain of dependence for characteristics passing through the right edge of the cell (i; j).
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We can �nd this amount by tracing back along the characteristics that originate from the rectangle

BCEF . This gives us the solid region ABCEFGH shown in Fig. 3.2. The domain of dependence of these

characteristics at time tn is the shaded region in Fig. 3.3.

Note that this region is the rectangle ABDE, plus the triangle ABH, minus the triangle DEG,

Fn
i+1

2
;j
�

Z Z
ABDE

f dx dy +

Z Z
ABH

f dx dy �

Z Z
DEG

f dx dy (3:10)

In order to approximate the right hand side of (5.10) we use one of the volume-of-
uid interface reconstruction

algorithms described in x2 to determine an approximation to the interface in cell (i; j) and cell (i; j�1). We

then compute the area of the intersection of the dark 
uid with the rectangle ABDE and the triangles DEG

and ABH. This yields an approximation to each of the terms on the right hand side of (5.10) and hence

an approximation to Fn
i+ 1

2
;j
. The 
uxes through the other three edges of the cell are found in an analogous

manner. This method for calculating the 
ux, which Colella [9] calls Corner Transport Upwind (CTU) is

�rst-order accurate. See [9] for a discussion of the accuracy of this method and [5] and [30] for the results of

tests when this method is implemented as a �nite di�erence algorithm.

3.3 A Second-Order Unsplit Advection AlgorithmWe now describe a second-order, unsplit, volume-

of-
uid advection algorithm. We approximate the 
ux Fn
i+ 1

2
;j
in (3.9) by integrating (1.7) over the prism

ABCDEF and integrating by parts. Writing (1.7) in the form

ft + ux f + u fx + (v f)y = 0 ; (3:11)

and setting u = ui+ 1
2
;j and ux = (ux)i;j we �nd that,
Z Z Z

ABCDEF

(ft + (ux)i;j f + ui+ 1
2
;jfx + (vf)y ) dx dy dt = 0 : (3:12)

Integrating the above expression by parts, and noting that ui+ 1
2
;j is constant, we �nd that the 
ux Fn

i+ 1
2
;j

is given by

Fn
i+ 1

2
;j
=

Z Z
ABDE

f dx dy +

Z Z
ABC

v f dx dt

�

Z Z
DEF

v f dx dt +

Z Z Z
ABCDEF

(ux)i;j f dx dy dt :

(3:13)

The integral over ABDE is the volume of dark 
uid in this rectangle. As above we use an interface

reconstruction algorithm to determine an approximation to the interface in the (i; j)th cell and use this

approximation to compute the area of the intersection of the dark 
uid with rectangle ABDE to compute

this quantity.

Now let R1 be the ratio of the volume of dark 
uid in ABDE to the area of ABDE, and let V1 be the

volume of the prism ABCDEF . We approximate the volume integral in (3.13) byZ Z Z
ABCDEF

(ux)i;j f dx dy dt � R1 V1 (ux)i;j:
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In order to evaluate the integral over DEF we integrate (1.7) in the form

Z Z Z
ABCDEF

(ft + (ux)i;j f + ui+ 1
2
;jfx + (vf)y ) dx dy dt = 0 : (3:14)

The domain of dependence of DEF is the triangle DEG. The tetrahedron DEFG is related to the

triangle DEF through

Z Z
DEF

f dx dt =

Z Z
DEG

f dx dy +

Z Z Z
DEFG

((ux)i;j + (vy)i;j) f dx dy dt : (3:15)

The integral over DEG is the volume of dark 
uid in the triangle DEG We approximate this quantity by

using an interface reconstruction algorithm to determine an approximation to the interface in the (i; j)th

cell and then computing the area of the intersection of the dark 
uid with triangle DEG.

Let R2 be the ratio of the volume of dark 
uid in DEG to the area of DEG, and let V2 be the volume of

the tetrahedron DEFG. Then the volume integral in (3.15) is approximately

Z Z Z
DEFG

�
(ux)i;j + (vy)i;j

�
f dx dy dt = R2 V2

�
(ux)i;j + (vy)i;j

�
:

We evaluate integral over ABC in a similar manner. Thus we are able to evaluate each term of (3.13), and

hence determine the 
ux of dark 
uid through the right edge of the cell.

Note that if vi;j+ 1
2
< 0, then the point G will lie in the (i; j + 1)th cell. Thus the tetrahedron DEFG

will lie in the (i; j + 1)th cell instead of the (i; j)th cell. In this case we add the tetrahedron DEFG to the

prism ABCDEF , instead of subtracting it as we did above. Hence we add the integral over DEF instead

of subtracting it. In order to avoid the distorted region that arises when ui+ 1
2
;j and ui+ 1

2
;j+1 are of opposite

sign we determine the x-coordinate of the vertex G by

x = min(i�x +
�x

2
; i�x +

�x

2
� �t ui+1

2
;j+1) :

In this way we are assured that G lies in the (i; j + 1)th cell.

4. Test Problems

4.1 Split Operator Test ProblemsWe begin by studying the accuracy with which second-order operator

splitting combined with each of the interface reconstruction methods approximates a line that is translating

in a constant velocity �eld. We obtained the errors reported in Table 4.1 by translating 100 randomly

generated lines with unit velocity in a randomly generated direction for one unit of time and averaging the

error E1 between the approximate and exact solutions. It is apparent from the data in Table 4.1 that the

SLIC, Center of Mass, centered di�erence, and Parker & Youngs' algorithms are all �rst-order accurate. As

with a stationary line, the LVIRA and ELVIRA methods essentially reproduce the interface exactly. The
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1/16 1/32 rate 1/64 rate

SLIC 1.2E-1 6.6E-2 0.91 3.0E-2 1.10
Center of Mass 1.8E-2 9.5E-3 0.95 4.4E-3 1.08

Parker & Youngs 3.3E-3 1.9E-3 0.87 8.4E-4 1.13
LVIRA 4.0E-13 2.1E-13 N/A 8.2E-14 N/A

ELVIRA 9.0E-17 4.2E-17 N/A 7.9E-17 N/A

Table 4.1 The average E1 error after translating 100 randomly generated lines one unit in time.

error given by the LVIRA method is due to the tolerance we used in Brent's algorithm. The ELVIRA method

is accurate to machine zero.

We note that one can use this as a design criterion for constructing a formally second-order accurate

interface tracking algorithm. Namely that it must propagate a straight line with any slope, in a uniform

velocity �eld in any direction, exactly.

Next we present three tests with circles. In the �rst test we translate a unit circle in the x-direction with

unit velocity for one unit of time using various CFL numbers �. In Table 4.2 we present the errors when

we use � = 1 while in Table 4.3 we present the errors when we use � = 1=32. It is apparent from the data

presented in these two tables that, in general, decreasing the CFL number did not reduce the error. In fact,

the amplitude of the error is generally larger when � = 1=32 than when � = 1, although in both cases the

error decreases at the same rate. The increase in the amplitude of the error seen in Table 4.3 is almost

certainly due to the accumulation of local truncation error over 32 times as many time steps. Unless noted

otherwise, we set � = 0:5 in all of the remaining test problems.

1/16 1/32 rate 1/64 rate
SLIC 9.1E-3 4.7E-3 0.97 2.4E-3 0.98

Center of Mass 2.6E-3 1.4E-3 0.93 7.5E-4 0.93
Parker & Youngs 8.7E-4 4.6E-4 0.95 2.3E-4 1.00

LVIRA 2.8E-4 6.6E-5 2.12 1.6E-5 2.06
ELVIRA 1.6E-4 4.0E-5 2.00 1.0E-5 2.00

Table 4.2 The E1 error after translating a unit circle one unit in time with CFL number � = 1.

1/16 1/32 rate 1/64 rate
SLIC 9.1E-3 4.7E-3 0.97 2.4E-3 0.98

Center of Mass 3.0E-3 1.6E-3 0.94 8.0E-4 1.00
Parker & Youngs 1.3E-3 6.6E-4 0.98 3.2E-4 1.03

LVIRA 5.0E-4 1.5E-4 1.67 4.8E-5 1.56
ELVIRA 4.4E-4 1.3E-4 1.69 3.8E-5 1.71

Table 4.3 The E1 error after translating a unit circle one unit in time with � = 1/32.
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Next we translate 100 unit circles with randomly generated centers in a randomly generated direction with

unit velocity for one unit of time. In Table 4.4 we present the E1 error averaged over 100 randomly chosen

circles. It is apparent that the Center of Mass, SLIC, and Parker & Youngs' methods are �rst-order accurate,

and the LVIRA and ELVIRA methods are second-order accurate. Central di�erence is second-order accurate

until the grid spacing is �x = 1=16, and then it is �rst-order accurate.

1/16 1/32 rate 1/64 rate
SLIC 1.8E-2 1.1E-2 0.82 6.3E-3 0.87

Center of Mass 4.8E-3 2.4E-3 1.00 1.2E-3 1.00
Parker & Youngs 1.1E-3 5.8E-4 0.95 2.8E-4 1.04

LVIRA 4.1E-4 1.1E-4 1.86 2.7E-5 2.04
ELVIRA 2.5E-4 6.6E-5 1.89 2.0E-5 1.65

Table 4.4 The average E1 error after translating 100 random unit circles in random directions.

In our �nal test with circles we place a unit circle with its center at cell center and rotate it with unit

angular velocity for one rotation. Here we used a CFL number of � = �=6. It is apparent from the data

presented in Table 4.5 that SLIC, the Center of Mass and Parker & Youngs' algorithms exhibit �rst-order

accuracy while the other three algorithms exhibit second-order accuracy. Starting with the left-hand column

and moving right, the overall decrease in the error for each algorithm when the grid was reduced from

h = 1=2 to h = 1=64 was 20, 47, 185, 827, 893 and 1146 respectively. A precisely second-order accurate

decrease in the error would be by a factor of 1024.

1/16 1/32 rate 1/64 rate

SLIC 1.9E-2 8.8E-3 1.08 4.6E-3 0.96
Center of Mass 1.1E-3 6.2E-4 0.89 3.1E-4 1.00

Parker & Youngs 4.0E-4 2.0E-4 1.00 7.8E-5 1.28
LVIRA 2.5E-4 5.9E-5 2.12 1.5E-5 1.97

ELVIRA 2.3E-4 5.7E-5 2.02 1.3E-5 2.19

Table 4.5 The E1 error after rotating a circle once with the operator split advection algorithm.

Finally we tested the second-order accurate operator split advection method with the various interface

reconstruction methods on Zalezak's test problem. Here we revolved the shape shown in Fig. 4.1 about a

point 5=3 units below its center for one revolution. It is apparent from the data in Table 4.6 that all of the

methods exhibit an O(h) decrease in the error.

In Figure 4.2 we present the results of using the operator split advection method and the various interface

reconstruction methods on Zalesak's test problem on a grid with h = 1=15. This grid size was chosen to

facillitate direct comparison with other published results of the same test problem (e.g., [5, 66]). Note that

25



Second-Order Accurate Volume-of-Fluid Algorithms

15 cells

5 cells

5 cells

Figure 4.1 The notched circle, �rst introduced by Zalesak to study the accuracy of advection algorithms,

which we use in several of our test problems.

the error is greatest at the corners. This is to be expected, since the interface has discontinuous derivatives

at the corners. In Table 4.7 we show the di�erence between the initial and �nal area of this shape. All of

the methods conserve the volume (or equivalently the mass) of the shape to machine zero.

1/16 1/32 1/64

SLIC -3.1E-15 -3.1E-15 7.1E-15
Center of Mass -2.7E-15 -4.9E-15 4.4E-15

Parker & Youngs -1.3E-15 -4.0E-15 3.1E-15
LVIRA -1.3E-15 -2.7E-15 1.1E-14

ELVIRA -4.4E-16 -4.0E-15 4.0E-15

Table 4.7 The di�erence between �nal and initial total area.

1/16 1/32 rate 1/64 rate

Center of Mass 6.8E-3 3.6E-3 0.94 1.8E-3 1.00
Parker & Youngs 1.1E-2 5.6E-3 0.98 3.1E-3 0.90

LVIRA 1.1E-3 2.8E-4 1.96 7.5E-5 1.87
ELVIRA 7.7E-4 1.8E-4 2.14 5.0E-5 1.80

Table 4.8 The average E1 error after translating 100 random unit circles in random directions.

3.2 Unsplit Operator Test Problems In this section we use the unsplit advection algorithm to compute

most of the test problems presented in x4. We begin with the translation of a smooth interface, the unit

circle. We take 100 unit circles with randomly generated centers, translate each circle with unit velocity in

a randomly generated direction and average the error E1 in approximating each circle.
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LVIRA

Parker & Youngs

SLIC

ELVIRA

Central Difference

Center of Mass

Figure 4.2 The result of using the operator split advection algorithm and the various interface reconstruc-

tion methods on Zalesak's test problem. Again notice that only the SLIC algorithm produces 
otsam.

It is apparent from the data shown in Table 4:8 that the errors associated with the Center of Mass and

Parker & Youngs' algorithms decrease at a rate that is not quite O(h); the overall decrease is by a factor

of 8 and 12 respectively. On the other hand the errors associated with the Centered Di�erence, LVIRA
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1/16 1/32 rate 1/64 rate

SLIC 2.5E-2 1.4E-2 0.89 6.9E-3 1.01
Center of Mass 7.2E-3 4.1E-3 0.88 2.3E-3 0.89

Parker & Youngs 6.2E-3 2.9E-3 1.07 1.4E-3 1.04
LVIRA 6.4E-3 2.9E-3 1.10 1.3E-3 1.12

ELVIRA 6.2E-3 2.8E-3 1.11 1.3E-3 1.08

Table 4.6 The average E1 error after translating 100 random notched circles in random directions.

and ELVIRA algorithms decrease at a rate that is somewhat better than O(h2); the overall decrease in

the error being 274, 276 and 376 respectively. In other words, the �rst two algorithms appear to be �rst-

order accurate, while the other three appear to be second-order accurate. As in x4.3 we conjecture that

the apparent second-order accurate behavior of the Centered Di�erence algorithm is again due to the fact

that on average it will produce a second-order approximation to a tangent to the circle in each cell. It is

important to note that this will not be the case is the interface is more nearly linear, in which case the

Centered Di�erence algorithm is on average �rst-order accurate as shown in Tables 2.1 and 2.3.

In the next test problem we rotate a unit circle, centered on a cell center, with unit angular velocity for

ten rotations. It is apparent from the data in Table 4.9 that the rate of decrease of the errors associated

with each algorithm is comparable with the rate of decrease seen in the previous test problem. In this

problem however, the Center of Mass and Parker and Youngs' algorithms exhibit a somewhat better than

O(h) decrease in the error. However, the same conclusions continue to apply.

1/16 1/32 rate 1/64 rate

Center of Mass 1.4E-3 6.3E-4 1.11 3.0E-4 1.05
Parker & Youngs 2.9E-4 1.4E-4 1.04 6.8E-5 1.03

LVIRA 2.4E-4 5.9E-5 2.03 1.5E-5 1.97
ELVIRA 7.2E-4 1.5E-4 2.40 1.6E-5 4.69

Table 4.9 The E1 error after rotating a circle 10 times with the unsplit advection algorithm.

In Fig. 4.4, we present �ve unit circles that have been rotated ten times with the various interface

reconstruction methods on a grid with h = 1=32 and compare the results with the true solution. At this

level of graphical resolution all of the approximate solutions are indistinguishable from the true solution.

In fact, even when magni�ed by a factor of 64, the approximate interfaces still appear to be continuous -

although not smooth - in spite of the fact that they are actually composed of a collection of discontinuous

line segments.

Finally we test the unsplit advection method on Zalezak's test problem. As one can see from the data

in Table 4:10 all of the interface reconstruction methods produce comparable errors - with the errors due
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LVIRA

Parker & Youngs

True

ELVIRA

Central Difference

Center of Mass

Figure 4.3 A unit circle that has been rotated for ten revolutions with the unsplit advection algorithm and

various reconstruction methods.

to the Center of Mass algorithm being slightly larger than the others - and that these errors decrease at a

rate that is marginally better than O(h). In Table 4.11 we present the di�erence between the volume of the

initial shape and the �nal shape. It is apparent that all of the methods conserve the volume (and hence the

mass) of the shape to machine zero.
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LVIRA

Parker & Youngs

True

ELVIRA

Central Difference

Center of Mass

Figure 4.5 Here we present the results of using the unsplit advection algorithm and the various reconstruc-

tion methods to compute Zalesak's test problem. Note that the computations shown here and in Fig. 4.2

were conducted on the very coarse grid shown in Fig. 2.1. Consequently one cannot detect the increased

resolution at the corners expected from the unsplit advection algorithm. Higher resolution computations of

this problem do exhibit better resolution with unsplit algorithm.
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1/16 1/32 rate 1/64 rate

Center of Mass 7.0E-3 3.7E-3 0.95 2.2E-3 0.84
Parker & Youngs 5.8E-3 2.6E-3 1.12 1.3E-3 1.00

LVIRA 5.8E-3 2.7E-3 1.07 1.3E-3 1.04
ELVIRA 5.7E-3 2.6E-3 1.10 1.2E-3 1.08

Table 4.10 The average E1 error for Zalesak's test problem.

1/16 1/32 1/64

Center of Mass 8.9E-16 -1.9E-14 7.2E-14
Parker & Youngs 2.2E-15 1.6E-14 4.9E-14

LVIRA -1.8E-15 -2.2E-15 3.3E-14
ELVIRA -6.7E-15 -1.1E-14 1.0E-14

Table 4.11 The di�erence between the �nal and initial total area.

In Fig 4.5 we present the results of computing Zalesak's test problem on a grid with h = 1=15. Again, we

chose this relatively coarse grid in order to facilitate a direct comparison with other published results of the

same problem such as in [5] and [66]. The coarseness of the grid prevents one from detecting the increased

resolution at the corners we expect with the unsplit advection algorithm. Higher resolution computations

of this problem do exhibit better resolution at the corners of Zalesak's shape with unsplit algorithm. We

conclude that, although both the fractional step and unsplit methods are second-order accurate, the unsplit

method does indeed produce better overall results.

6. Concluding Remarks

We have presented a comprehensive framework for the design and implementation of modern volume-

of-
uid interface tracking algorithms and conducted an extensive computational study of the accuracy of

several commonly used versions of these algorithms. Our presentation is based on separating the interface

reconstruction phase from the advection or time update phase of the overall tracking algorithm and studying

the accuracy of the interface reconstruction algorithm independently of the advection algorithm. In our study

of volume-of-
uid interface reconstruction algorithms, we have identi�ed several key properties - or design

criteria - that we believe will ensure that the method is second-order accurate on smooth interfaces; i.e.,

interfaces that have two or more continuous derivatives. In particular, we have found that if a volume-of-


uid interface reconstruction algorithm is designed in such a way that it always reproduces lines (or planes

in 3D) exactly, then it will be second-order accurate on smooth interfaces in both the L1 and the L1

norms when used to reconstruct stationary interfaces. We have introduced two new volume-of-
uid interface

reconstruction algorithms that have this property and demonstrated that they consistently exhibit second-

order accuracy when we use them to reconstruct smooth stationary interfaces, whereas the other algorithms

we tested overall exhibit �rst-order accuracy.
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In our study of volume-of-
uid advection algorithms we have demonstrated that one can obtain second-

order accuracy (in space and time) by combining one of our second-order accurate interface reconstruction

algorithms with a standard fractional step or operator split solution of the time evolution equation and

alternating the sweep directions at each time step (i.e., Strang splitting). We have also introduced a new

unsplit volume-of-
uid advection algorithm that is second-order accurate in space and time when combined

with one of the second-order accurate interface reconstruction algorithms. Furthermore we have shown that

the unsplit algorithm exhibits noticeably better resolution of regions near discontinuities in the derivatives

of the interface (e.g., corners). Since this improved resolution does not manifest as an increase in the order

of accuracy of the advection algorithm, we conjecture that it is a higher order e�ect due to an increase in

the accuracy with which the algorithm resolves a portion of the error, such as the phase error (e.g., see the

discussion on phase errors in [12]).

Another conclusion that can be drawn from our study is that piecewise linear interface reconstruction

algorithms that reconstruct lines exactly will revert to �rst-order accuracy when the interface fails to be

su�ciently smooth (e.g., remains continuous but has discontinuities in the �rst-derivative). We conjecture

that the constraint that a volume-of-
uid interface reconstruction method must always reproduce the correct


uid volume in each cell is su�cient to guarantee �rst-order accuracy in the L1 norm for time dependent

advection problems - at least when the advection algorithm is formally second-order accurate as is the case

in our studies. This conclusion appears to be true even for reconstruction algorithms that do not exhibit

second-order accuracy on smooth interfaces, such as SLIC. However it is apparent from the results presented

in Table 3.3 that something more than this constraint is needed in order to guarantee �rst-order accuracy

in the L1 norm.

In summary, we have presented two new volume-of-
uid interface reconstruction algorithms and demon-

strated that they are more accurate than the most commonly used volume-of-
uid interface reconstruction

algorithms. These new interface reconstruction algorithms are currently being used in a number of appli-

cation codes for modeling the motion of material interfaces in compressible gas dynamics [21, 48, 49, 32],

high-pressure solids in the hydrostatic limit [35, 36, 50] and variable density incompressible 
uid 
ow [3,

47]. We have also introduced a new, unsplit volume-of-
uid advection algorithm, demonstrated that it is

second-order accurate in space and time and shown that it exhibits superior resolution of kinks or corners

in the interface as compared to the fractional step advection algorithm, which is currently the most widely

used advection algorithm.
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